

AP 1: Status-quo – Erhebung der Rohmilchmikrobiota

A. Siebert¹, L. Staib¹, E. Doll¹, G. Fiedler², C. Böhnlein², S. Scherer¹ und M. Wenning³

- ² Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel, 24103 Kiel
- ³ Bayrisches Landesamt für Gesundheit und Lebensmittelsicherheit, 85764 Oberschleißheim

■ Säure/Lauge Zirkulation (n=155)

■ Heißwasser (n=16)

Analyse des Rohmilchmikrobioms - Methode Rohmilch und Hofparameter Rohmilch und Hofparameter aus Rohmilch Extraktion bakterieller DNA aus Rohmilch Amplicon Sequenzierung und Datenanalyse

Abb. 1: Schematische Darstellung des Prozesses zur Erhebung / Analyse der Rohmilchmikrobiota.

Zellzahlbestimmung zur quantitativen Mikrobiomanalyse (Verrechnung mit sequenzierter Abundanz jeder Gattung)

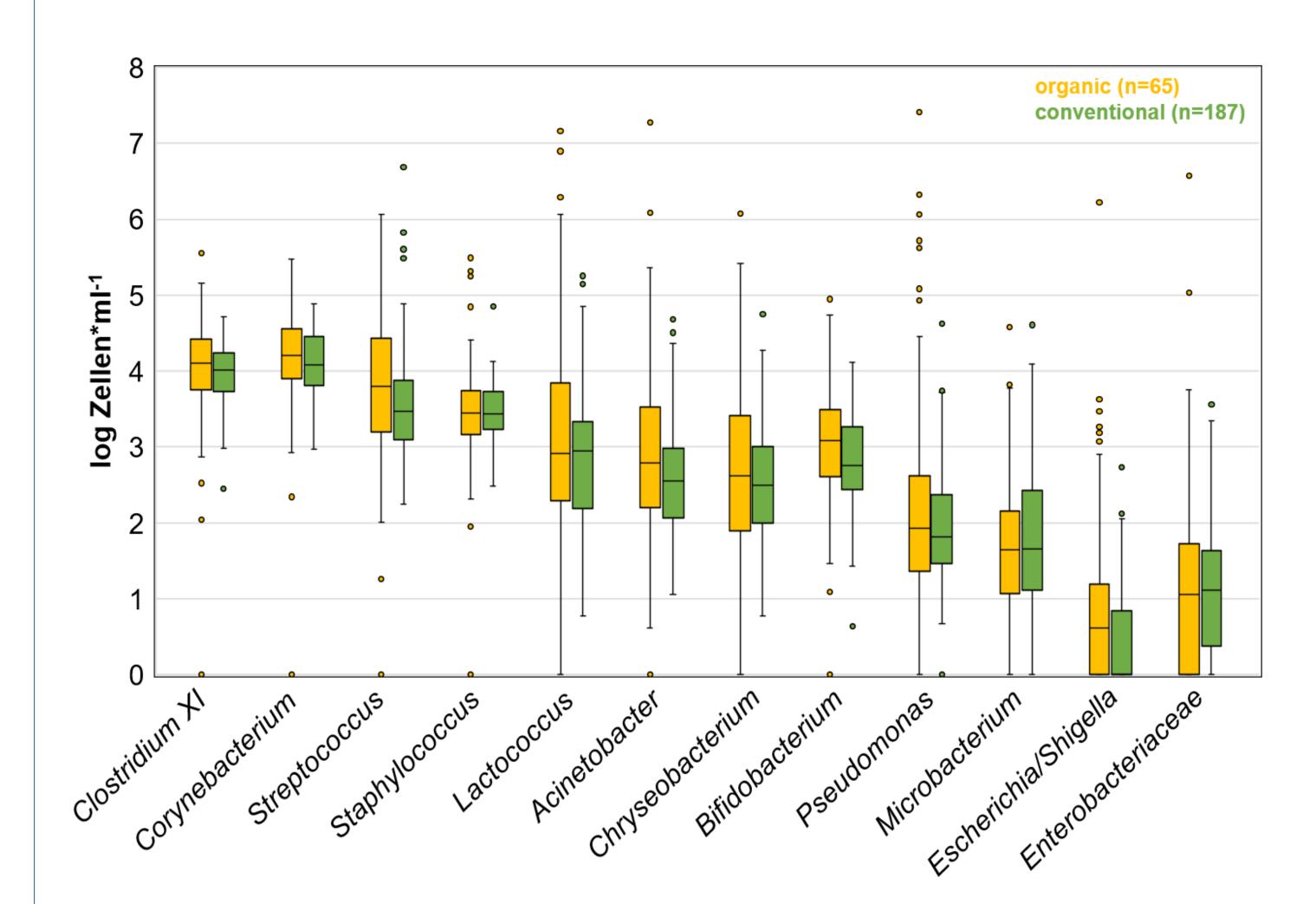
BactoCountTM

Zusammensetzung der Rohmilchmikrobiota in Abhängigkeit von...

- ...Art der Erzeugung (konventionell vs. ökologisch)
- ...Tierhaltung
- ...Melksystem und Euterhygiene
- ...geographische Lage
- ...Saison

2. Korrelationsanalysen

Laufstall (n=46)


Laufstall und Auslauf (n=46)

➤ Berechnung von Korrelationen zwischen Abundanz / Quantität einzelner Gattungen bzw. Keimgruppen und hofseitigen Faktoren

1. Datenerhebung

- > Verteilung einzelner Gattungen in deutscher Rohmilch
- > Auswahl von Gattungen bzw. Keimgruppen
 - ...mit Potential für Produktverderb
 - ...mit hygienischer Relevanz

Datenerhebung / Quantitative Mikrobiomanalyse - Erste Ergebnisse

Abb. 2: Absolute Zellzahlen (Zellen*ml⁻¹ Rohmilch) einzelner Gattungen (exemplarisch mit hoher / mittlerer / geringer Keimzahl im Median) sowie der *Enterobacteriaceae* detektiert in konventioneller und ökologischer Rohmilch.

Weide (n=47)
Stall anbinden (n=36)

B

Streptococcus

Tierhaltung Melksystem Melksystem Melkstand

Melkroboter (n=16)

Kaltwasser (ca. 40°C) (n=9)

Kaltwasser (ca. 40°C) (n=9)

Kaltwasser (ca. 40°C) (n=9)

Tierhaltung Melksystem Me

Melkstand manuell (n=112)

Rohrmelkanlage (n=49)

Abb. 3: Absolute Zellzahlen (Zellen*ml⁻¹ Rohmilch) der Gattungen *Streptococcus* (A) und *Staphylococcus* (B) in Bezug auf hofseitige Faktoren.

- Acinetobacter spp., Lactococcus spp., Pseudomonas spp.:
 - ➤ größte Streubreite mit Keimzahlen <10 bis >10⁷ Zellen*ml-1
- ➤ Acinetobacter spp. und Pseudomonas spp.: assoziiert mit frühzeitigem Produktverderb → heterogene Verteilung der Rohmilchqualität
- Enterobacteriaceae inkl. Escherichia/Shigella spp.:
 - ➤ überwiegend geringe Keimzahlen mit <10 /<100 Zellen*ml⁻¹ im Median
 - ➤ Hinweis auf guten Hygienestandard bei der Milchproduktion
- Spezies der Gattungen Streptococcus spp. und Staphylococcus spp. sind mit der Euterentzündung Mastitis assoziiert
 - Indikatorkeime für Hygiene
- Streptokokken zeigen insgesamt eine breitere Streuung (bis ~10⁶ Zellen*ml⁻¹) als die Staphylokokken (bis ~10⁵ Zellen*ml⁻¹)
- Faktoren wie z.B. das Melksystem oder die Reinigung des Melkstandes könnten einen Einfluss auf die Prävalenz von Streptococcus und Staphylococcus haben (vorläufige Ergebnisse!)

Ausblick:

- Rohmilch-Probenahme bis Herbst 2020 (Süden, TUM) und Juni 2021 (Norden, MRI)
- Sequenzierung und Analyse von Rohmilchproben zur Erweiterung des Datensatzes (insgesamt ~1000 Proben Süden und ~1500 Proben Norden)
- Korrelationsanalysen zur Aufdeckung determinierender Einflussfaktoren