














# Innovationstage 2020 – digital

Für eine starke Landwirtschaft und sichere Ernährung

20. und 21. Oktober auf www.innovationstage-digital.de

#### PHID-Coleo Projekthomepage

www.innovationstage-digital.de

www.ble.de/innovationen









Morphologisch-molekulare Identifikation von Käfern an Verpackungsholz

Förderbereich: Innovative Vorhaben für einen nachhaltigen Pflanzenschutz

FKZ 2814905615, Laufzeit: 15.06.2017 - 15.12.2020

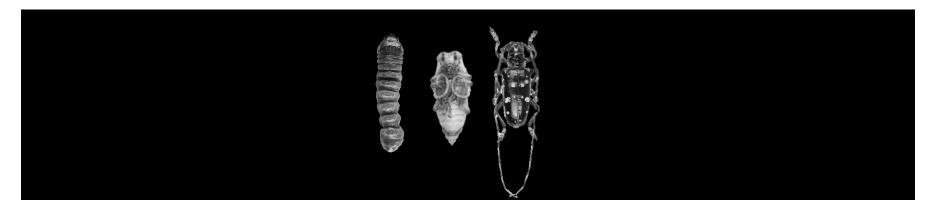
#### Gefördert durch:





Bundesanstalt für Landwirtschaft und Ernährung (Projektträger)

Projektbetreuung: Dr. Carmen Lübken


Ref. 321 – Innovationen

Ressourcenschonender Pflanzenbau Verbraucherschutz, Digitalisierung





# PHID - Coleo Plant health identification of Coleoptera



Landwirtschaftliches Technologiezentrum Augustenberg, LTZ (Projektkoordination)
Dr. Olaf Zimmermann (Ref. 33, Zoologische Diagnostik)

#### Universität Hohenheim

Iris Häußermann, Prof. Martin Hasselmann (FG Populationsgenomik bei Nutztieren) Philipp Bauer, Prof. Claus P.W. Zebitz (FG Angewandte Entomologie)

AP 1: Morphologischmolekulare Identifikation von Verpackungsholzkäfern

AP 3: Netzwerkbildung, Internet-Datenbank, Kommunikation





© Hinweise zur Pflanzengesundheit, LTZ (2016) und v.Wuthenau, LTZ (2013)



Technologiezentrum Augustenberg

Landwirtschaftliches



Bundesministerium für Ernährung

und Landwirtschaft

Gefördert durch:



AP 2: Etablierung von Methoden zur innerartlichen Unterscheidung invasiver Arten am Beispiel des ALB

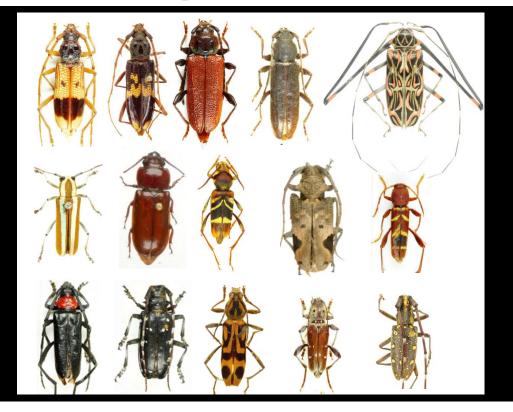
AP = Arbeitspaket ALB = Asiatischer Laubholzbockkäfer





# Der Asiatische Laubholzbockkäfer (ALB) als Paradebeispiel

- Natürliche Verbreitung: China, Korea
- Wirtspflanzen: u.a. Ahorn, Rosskastanie, Weide, Pappel, Birke und Ulme
- Mit Verpackungsholz mehrfach nach Europa eingeschleppt
- ALB-Befall in Deutschland erstmals 2004
- Larven schädigen durch Fraß die physische Stabilität von Ästen und schränken den Saftfluss ein
- Eiablagestellen und Ausbohrlöcher sind Eintrittspforten für Fäulepilze
- Von der EU als Quarantäneschadorganismus eingestuft
- Tilgungsmaßnahmen: Baumfällungen und Verbrennung, Monitoring, Einrichtung von Quarantänezonen




Anoplophora glabripennis (Motschulsky, 1853)





# Weitere Beispiele für temporär oder dauerhaft eingebürgerte Bockkäferarten in Europa...



Phoracantha recurva

Phoracantha semipunctata

Callidiellum rufipenne

Acrocinus longimanus

Saperda candida

Neandra brunnea

*Xylotrechus chinensis* 

Phryneta leprosa

... und viele mehr





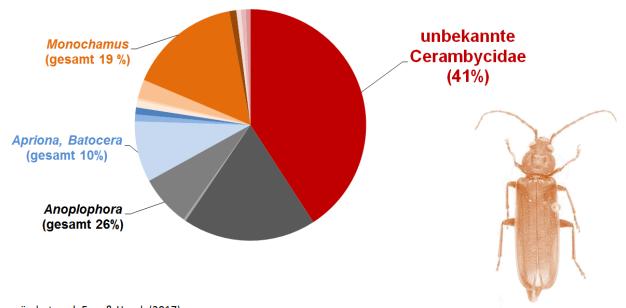
> 90% der eingeschlepptenOrganismen sind Insekten

ca. 80% phytophage u. A. Fruchtfliegen, Mottenschildläuse, Blattminierer, Thrips...

ca. 15% xylophage Insekten



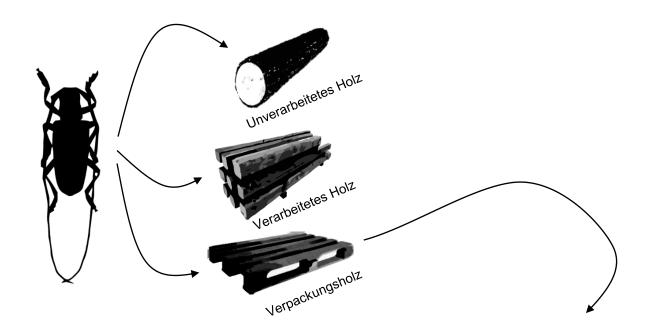
Nach Schätzungen der US-Landwirtschaftsbehörde (USDA 2003) stehen etwa 70% der im internationalen Handel transportierten Waren mit Holzverpackungsmaterial in Verbindung (HAACK et al. 2014).






# ... lediglich 50% der eigeschleppten Organismen werden auf Artniveau bestimmt.

Beispiel Bockkäfer →


Anzahl der Beanstandungen mit Bockkäferfunden an Verpackungsholz bei Inspektionen in der Europäischen Union zwischen 1998 und 2013 (n = 306)







Laut Meurisse et al. (2019) werden Käfer gegenüber anderen Insektengruppen deutlich häufiger mit Holz verschleppt.



Speziell im Verpackungsholz-Bereich zählen **Bohr- und Splintholzkäfer** sowie **Bockkäfer** zu den wichtigsten Käfergruppen (Eyre et al. 2018).







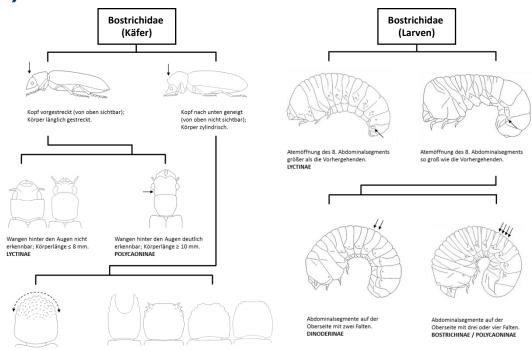








Halsschild vorn kugelig-rund.


mit Raspelstruktur.

DINODERINAE

# **BOSTRICHIDAE** (Bohr-und Splintholzkäfer)

vereinfachte Bestimmungshilfen zu ausgewählten Unterfamilien →

- kostenfreie
   Bestimmungshilfe
   gedruckt und als pdf
- geeignet als Arbeitsgrundlage für SOPs im Rahmen der Akkreditierung der Diagnose



Halsschild vorn nicht kugelig-rund.

Bostrichinae

z.T mit Zähnchen, Haken, Kerben, Hörnern.





# CERAMBYCIDAE (Bockkäfer)

ca. 25.000 beschriebene Arten

ca. 4.000 Gattungen

8 Unterfamilien

xylophag, phytophag

monophag, polyphag

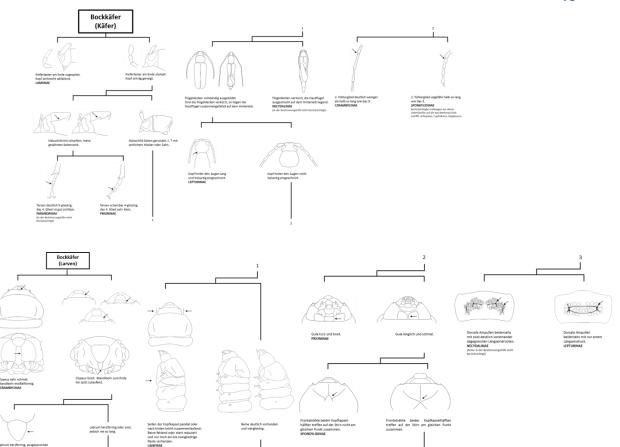
oft nur in bestimmten Pflanzenbereichen (Wurzel, Stammbereich, Äste oder Zweige)

Larven: in Rinde, zwischen Rinde und Splint, im Holz

Zustand des Substrats spielt eine Rolle (Nährstoffgehalt, Feuchtigkeit, Temperatur)










# **CERAMBYCIDAE** (Bockkäfer)

vereinfachte Bestimmungshilfen zu ausgewählten Unterfamilien →

- kostenfreie
   Bestimmungshilfe
   gedruckt und als pdf
- geeignet als Arbeitsgrundlage für SOPs im Rahmen der Akkreditierung der Diagnose



AP 1: Morphologischmolekulare Identifikation von Verpackungsholzkäfern

AP 3: Netzwerkbildung, Internet-Datenbank, Kommunikation



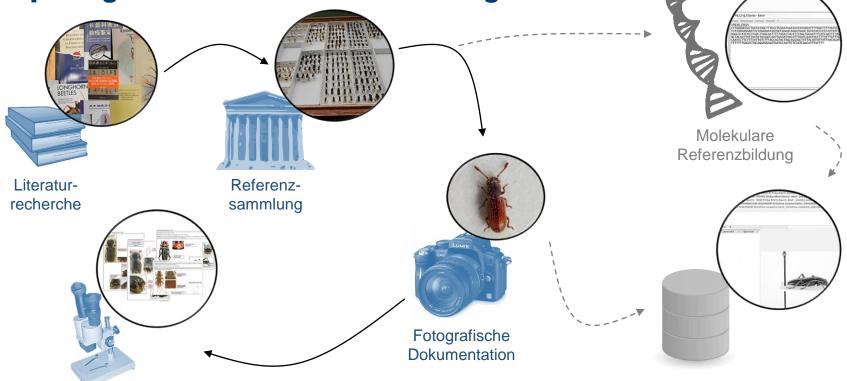


© Hinweise zur Pflanzengesundheit, LTZ (2016) und v.Wuthenau, LTZ (2013)










AP 2: Etablierung von Methoden zur innerartlichen Unterscheidung invasiver Arten am Beispiel des ALB





# Morphologisch-molekulare Bestimmungshilfen



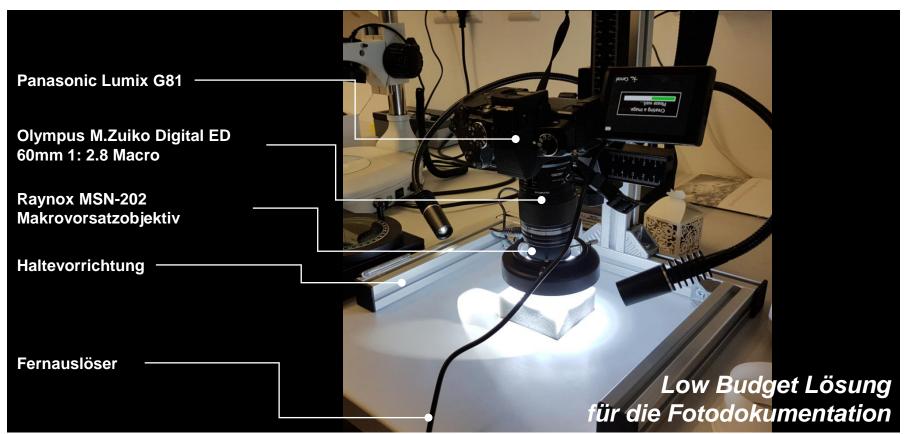
Bestimmungshilfen

Datenbank





#### Literatur


- Gegenbestimmung
- Identifikation von Bestimmungsmerkmalen
- Angaben über Wirtspflanzen und Verbreitung
- als Referenzbibliothek für die Pflanzenschutzdienste



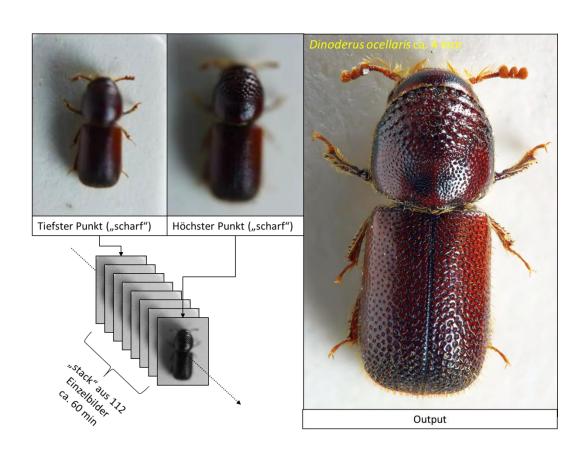




#### **Fotodokumentation**








### **Fotodokumentation**

Konvertierung aufgenommener Video-Files (.avi) in Einzelframes (.jpg) und anschließende Erstellung von Schichtbildaufnahmen.

#### Verwendete Software:

Free Video to JPG Converter CombineZP CZP Batch







# **Fotodokumentation**







# **Dokumentation**





AP 1: Morphologischmolekulare Identifikation von Verpackungsholzkäfern

AP 3: Netzwerkbildung, Internet-Datenbank, Kommunikation



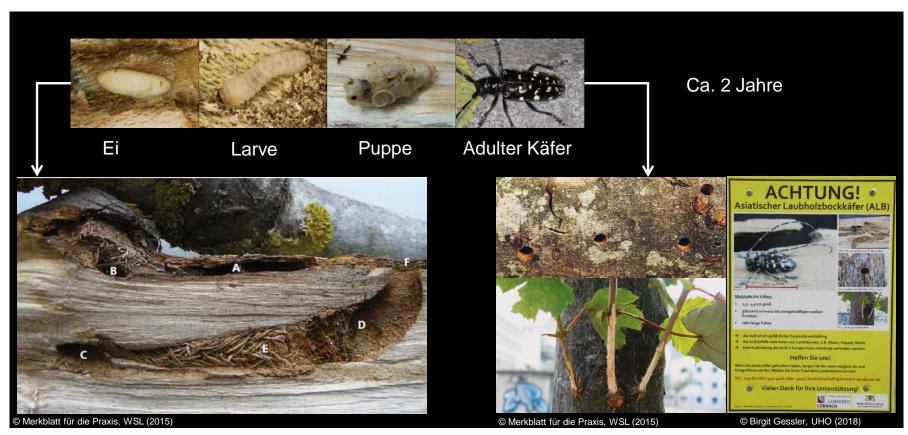


© Hinweise zur Pflanzengesundheit, LTZ (2016) und v.Wuthenau, LTZ (2013)







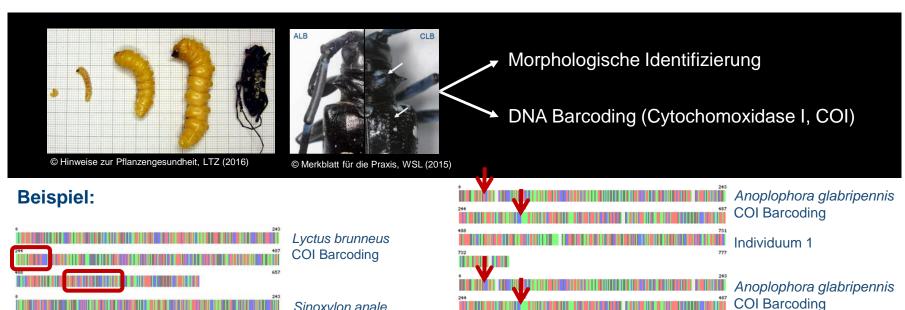



AP 2: Etablierung von Methoden zur innerartlichen Unterscheidung invasiver Arten am Beispiel des ALB





# Lebenszyklus und Schäden an Laubbäumen durch Befall mit ALB








# **Artbestimmung vs. Innerartliche Differenzierung**

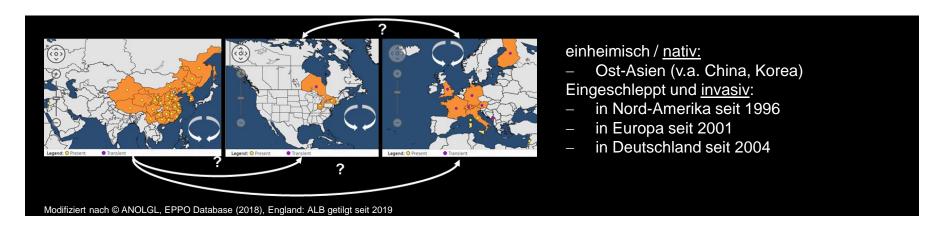
Sinoxylon anale COI Barcoding



Größere Unterschiede/Polymorphismen

Zuordnung der Art

Kleinere innerartliche Unterschiede von Populationen **Zuordnung der Herkunft** 


Individuum 2

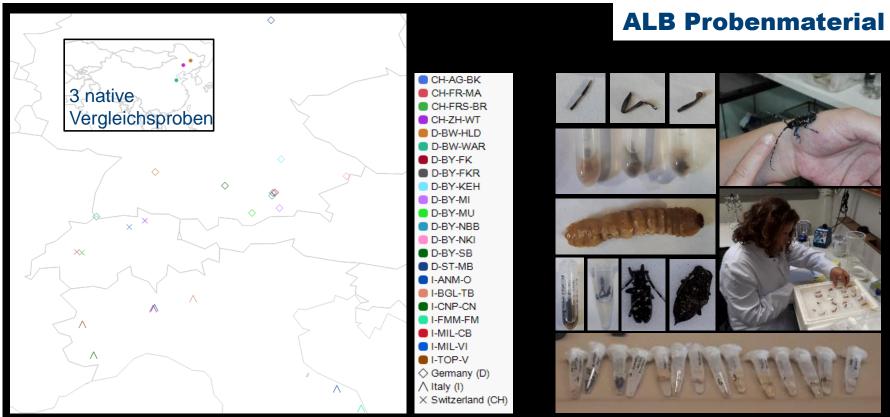




# Globale Ausbreitung von Anoplophora glabripennis

Der ALB wurde wahrscheinlich mehrfach über den globalen Handel mit China und Korea in Nord-Amerika und Europa eingeschleppt. Die Verbreitungswege und sekundären Verschleppungen sind bisher ungeklärt.






Aufklärung durch Identifizierung der innerartlichen Unterschiede und Populationsstrukturen

- 1. Mitochondriale Marker (Cytochromoxidase 1 und 2)
- 2. Genomische Marker/SNPs via Genotype-by-Sequencing (GBS)

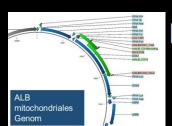











#### Versuchsüberblick











#### Sanger-Sequenzierung

mitochondrialer Marker

- Cytochomoxidase I und II
- COI-Barcoding





genomische Marker/SNPs via

#### Genotype-by-Sequencing

- NextSeq 500
- 2 x 150 bp paired-end

- Haplotypen-Analyse
- Vergleich mit BOLD- und NCBI-Datenbanken



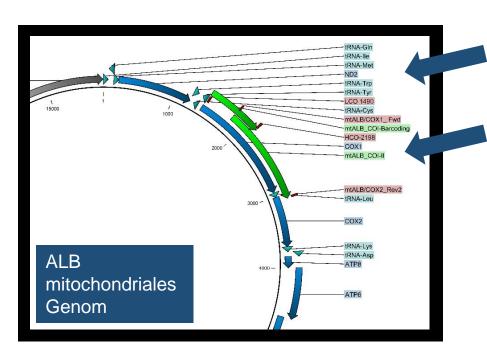


- Bestimmung der genetischen Diversität und der Populationsstrukturen
- Verwandtschaftsanalysen








Effizientere Bekämpfungsstrategien





#### **Mitochondriale Marker**

- Datenlage: gut erforscht, etablierte Marker
- Genetische Eigenschaften: konservierte Gene, hohe Anzahl an Kopien, haploid (maternal)



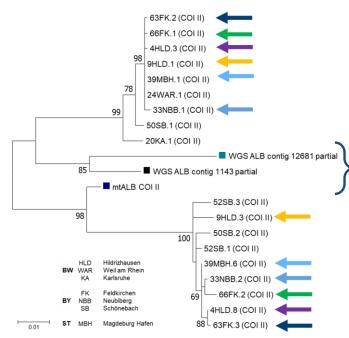
### **COI-Barcoding**

Molekulare Artbestimmung

Innerartliche Variationen

- Barcoding: Artbestimmung mittels der DNA-Sequenz eines Markergens.
- Arthropoden: meist verwendet ~700 bp großer Abschnitt der Cytochromoxidase I (COI) mit Universal-Primern (Folmer et al. 1994)

# Cytochromoxidase I/II


Innerartliche Variationen

- Größerer Abschnitt von COI zusammen mit Teilen einer weiteren Untereinheit (COII)
- Ähnliche Marker häufig in "Popsets" von ALB in NCBI vertreten
- Aufdecken von mehr Variationen trotz der konservierten Eigenschaften



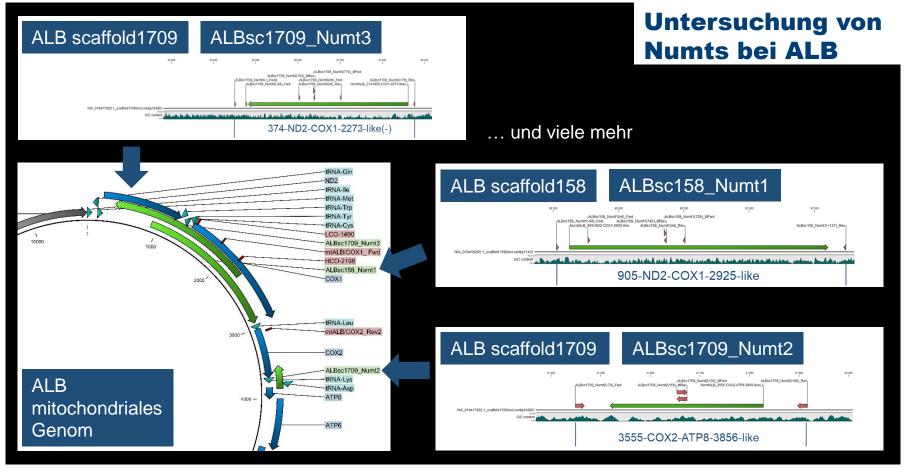


# **Genetische Variation Cytochromoxidase I/II**



Baum nach *Maximum Likelihood* Methode, T92 Modell, 500 bootstraps, farbige Pfeile stehen für dieselben Individuen

#### Zwei Haplotyp-Gruppen für COI/II

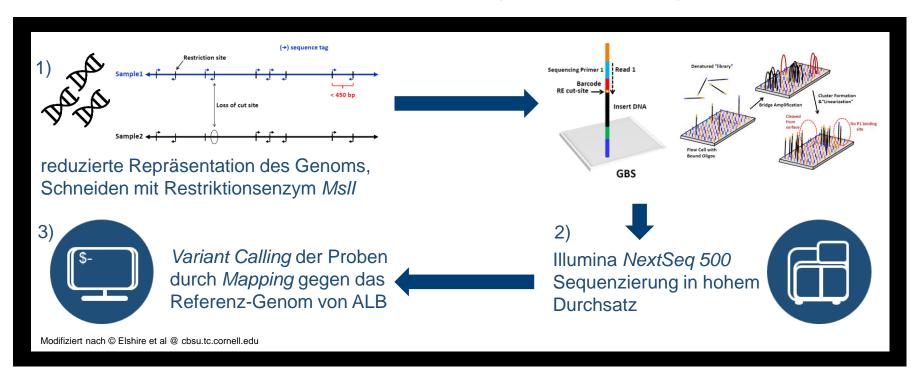

- Kopie ins nukleäre Genom (Numts, <u>Nu</u>clear
   <u>mit</u>ochondrial <u>s</u>equence) am wahrscheinlichsten
- Potentielle Störung des COI-Barcodings für den ALB
- Weitere Untersuchungen der Numts, verfolgen unterschiedlicher evolutionärer Hintergründe Testen ob COI-Barcoding bei ALB gestört ist

BLAST der mtALB-COI/II Sequenz gegen WGS contigs von ALB (2018)

- BLAST mitochondrialer Sequenzen zum Aufspüren weiterer Numts im Referenzgenom von ALB
- PCRs und Sanger-Sequenzierung von Numts
- COI-Barcoding
- PCRs und Sanger-Sequenzierung
- Auf mehrfache Haplotypen/Individuum überprüfen



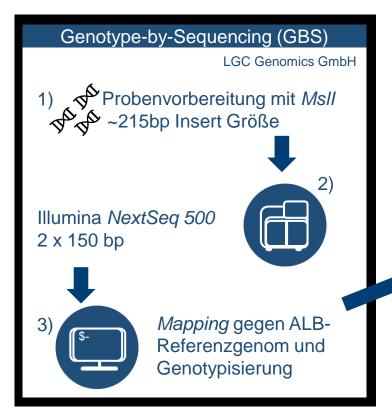


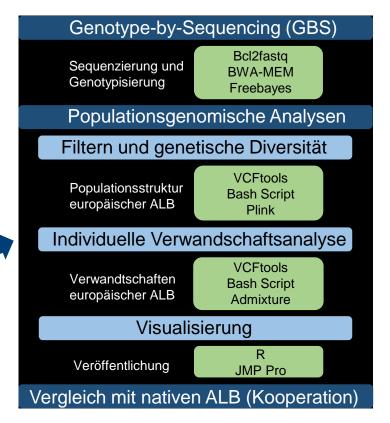







# **Genotype-by-Sequencing (GBS)**


Effizientes und kostengünstiges genomweites Marker-Screening nach <u>Single Mucleotide Polymorphisms</u> (SNPs) durch simultane Hochdurchsatz-Sequenzierung und Genotypisierung








### **Genetische Variation und Populationsstruktur von ALB**









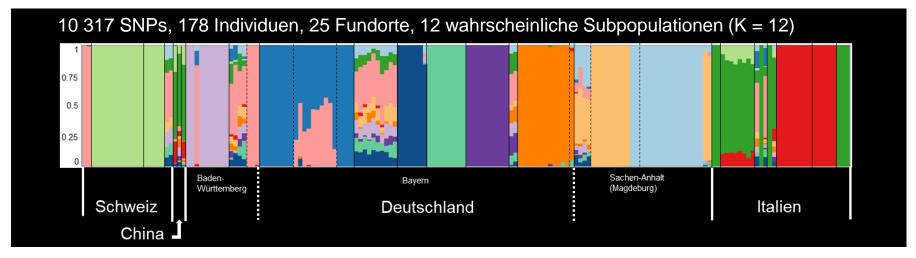
#### **Genomische Marker via GBS**

#### 3 Durchläufe von GBS mit insgesamt 178 ALB-Proben

- davon 3 CN Vergleichsproben
- davon 2x Interne Kontrolle (D-BY-SB-15-047)

10-tausende genomische Marker zur Bestimmung der innerartlichen genetischen Diversität und der Bestimmung der Verwandtschaften

|                              | * nur Ortsname, mehrere Fundorte innerhalb möglich |                      |                     |
|------------------------------|----------------------------------------------------|----------------------|---------------------|
| Filterkombination ("1%miss") | Anzahl<br>SNPs/Marker                              | Anzahl<br>Individuen | Anzahl<br>Fundorte* |
| ALB-Proben insgesamt         | 10 317                                             | 178                  | 25                  |
| CH + D-BW                    | 9 237                                              | 38                   | 6                   |
| D-BY                         | 11 499                                             | 71                   | 8                   |
| D-ST-MB                      | 13 193                                             | 32                   | 1                   |
| Italien                      | 16 493                                             | 32                   | 7                   |

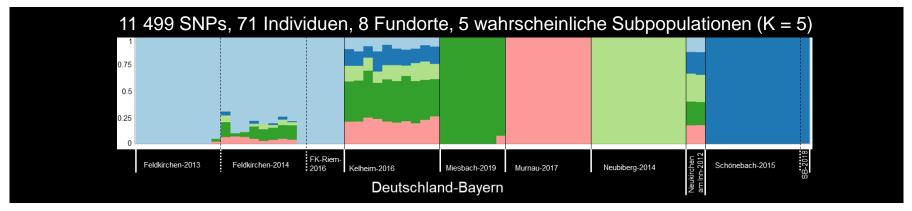

Filter: Qualität, Abdeckung, Allel-Frequenz und fehlende Daten ("miss")





# Admixture Analyse – Verwandtschaft der ALB Funde in Europa

Modell-basierte Berechnung individueller Verwandtschaften und die wahrscheinlichste Anzahl der Subpopulationen (K) aus SNP-Datensätzen.

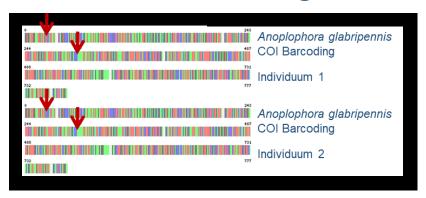



- Geringe genetische Diversität innerhalb vieler Fundorte (<u>Founder-Effekt</u>), teilweise auch benachbarter/nahe gelegener Fundorte
- Vielseitige Populationsstrukturen der invasiven europäischen Befallsgebiete und damit höchst wahrscheinlich auch eine komplexe Einschleppungs-Geschichte z.B. <u>mehrfache Einschleppung</u> und <u>sekundäre Verschleppung</u>



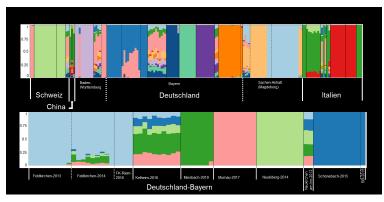


# Admixture Analyse – Verwandtschaft der ALB Funde in Bayern




- In Orten wie Miesbach, Murnau, Neubiberg und Schönebach sind einzelne Einschleppungen (oder Verschleppungen) auf Grund der eindeutigen verwandtschaftlichen Abgrenzung sehr wahrscheinlich
- Mögliche sekundären Verschleppungen (z.B. Neukirchen am Inn, oder Kelheim zu anderen Fundorten) müssen geprüft werden
- Die "vermischten" Gruppen zeigen h\u00f6here genetische Diversit\u00e4t, was auf eine junge Einschleppung zum Fund-Zeitpunkt hindeuten k\u00f6nnte (Abgleich mit nativen Proben erforderlich)
- Beispiel zur Anwendung in der Praxis: 2019 konnte ein Einzelfund aus Pheromon-Fallen in Schönebach (2018) eindeutig mit früheren Funden (2015) verwandtschaftlich in Verbindung gebracht werden, was eine Anpassung der Bekämpfungsstrategie erforderlich machte.






### **COI-Barcoding**



- Hoch konservierte Region, daher eher wenige SNPs
- Gute Datenlage/Vergleichsmöglichkeiten mit weltweiten ALB Populationen
- Einfache Handhabung/schnelle Ergebnisse
- Geringe Auflösung kann zu verfälschten Darstellungen der Verbreitung führen

#### **Genomische Marker/SNPs**




- Sehr viele und je nach Filterkombinationen auch eher seltenere SNPs
- Bisher <u>einzigartig</u> für europäische ALB

VS

- Bisher hoher Aufwand und Knowhow nötig
- Sehr hohe Auflösung kann das Verständnis der Verbreitung nachhaltig verbessern und für effizientere Bekämpfungsstrategien genutzt werden

AP 1: Morphologischmolekulare Identifikation von Verpackungsholzkäfern

AP 3: Netzwerkbildung, Internet-Datenbank, Kommunikation





© Hinweise zur Pflanzengesundheit, LTZ (2016) und v.Wuthenau, LTZ (2013)

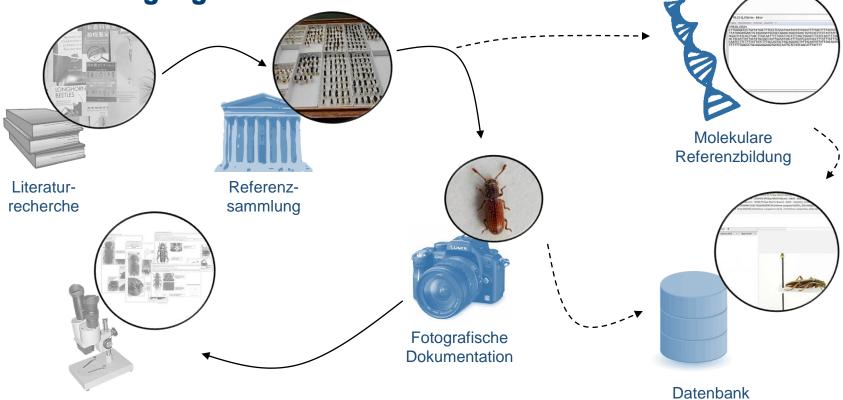


Landwirtschaftliches Technologiezentrum Augustenberg



Gefördert durch:






AP 2: Etablierung von Methoden zur innerartlichen Unterscheidung invasiver Arten am Beispiel des ALB



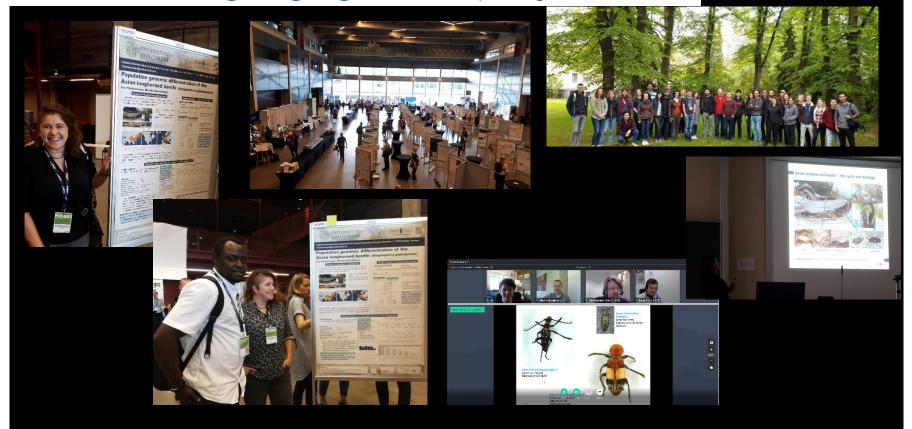


# Öffentlich zugängliche Datenbank



Bestimmungshilfen












# Netzwerkbildung: Tagungsbesuche, Projekttreffen







# **Netzwerkbildung: Tagungsbesuche, Workshop-Angebote**







# Ausblick: Beantragung von PHID-Coleo II

Erweiterung der Thematik um holzschädigende Käferfunde an lebenden Gehölzpflanzen-Importen in der Pflanzengesundheit

- Prachtkäfer (Buprestidae)
- Borkenkäfer (Scolytinae)

Digitale Bestimmung der Käfer mit Smartphone-Bilderkennung

Nutzung von Next Generation Sequencing (NGS)

#### Populationsgenetische Charakterisierung weiterer Bockkäfer-Arten

Chinesischer Laubholzbock *Anoplophora chinensis* (wiederholte Einschleppung nach Europa)

Asiatischer Moschusbock Aromia bungii (in Bayern, Italien nicht ausrottbar an Pflaume, Pfirsich)





# **Besuchen Sie unser Projekt!**





© Hinweise zur Pflanzengesundheit, LTZ (2016) und v.Wuthenau, LTZ (2013)





Gefördert durch:



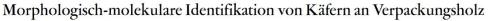




#### **PHID-Coleo Homepage**



PHID-Coleo Projekthomepage (LTZ)


popgenomik.uni-hohenheim.de

Kontakt: PHID-Coleo@ltz.bwl.de















# Innovationstage 2020 – digital

Für eine starke Landwirtschaft und sichere Ernährung

20. und 21. Oktober auf www.innovationstage-digital.de

www.innovationstage-digital.de

www.ble.de/innovationen